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Abstract

The increase in secure web services and encrypted network communication makes the

network analysis of encrypted web traffic of utmost importance. This research evaluates

the use of Machine Learning (ML) algorithms to classify web services within encrypted

Transport Layer Security (TLS) flows. The ML algorithms are compared primarily

based on classification accuracy. The execution time of the classifiers, however, are also

considered as classifiers must be able determine labels quickly to be used in near real-time

network protection devices.

The first 12 packets of a flow are analyzed using the following five ML algorithms:

Naı̈ve Bayes, NBTree, LibSVM, J4.8, and AdaBoost+J4.8. Every experiment is run using

10-fold cross validation and 16 distinct web services as labels. With the exception of Naı̈ve

Bayes the algorithms perform with an accuracy greater than 96%. AdaBoost+J4.8 and

J4.8 produce the best accuracies and runtimes. While NBTree and LibSVM both perform

marginally worse than AdaBoost+J4.8 and J4.8 in accuracy, their runtimes are each at least

an order of magnitude greater.

Additional experiments show the accuracy and runtimes of J4.8 and AdaBoost+J4.8

initially increase as the flow lengths analyzed increase. J4.8 reaches a peak accuracy of

97.99% at 14 packets. AdaBoost+J4.8 peaks later at 18 packets with 98.41% accuracy.

AdaBoost+J4.8 requires 21.55 microseconds to classify a single flow at peak accuracy,

while J4.8 requires only 2.37 microseconds to classify at peak accuracy. The quick runtimes

and high accuracies of the J4.8 and AdaBoost+J4.8 indicate that these ML algorithms are

good choices for near real-time classification of web services within an encrypted TLS

flow.

iv



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 TCP/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Network Encrpytion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Statistical Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Metalearning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Encryption and Network Analysis . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 Deep Packet Inspection . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1.1 Current DPI Solutions . . . . . . . . . . . . . . . . . . . 17
2.6.2 Shallow Packet Inspection . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

III. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Goals and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 System Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



Page

3.3 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Workload Generation . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 System Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 J4.8 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 AdaBoost Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.3 Computer System Parameters . . . . . . . . . . . . . . . . . . . . 36

3.7 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Evaluation Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 Methodology Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

IV. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Flow Length Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 J4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 AdaBoost+J4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix: Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



List of Figures

Figure Page

2.1 TCP/IP Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sample Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Flow Identification System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Violin Plot Showing Effects of 10-Fold Cross Validation on Distribution . . . . 42

4.2 Violin Plot Showing Effects of 10-Fold Cross Validation on Distribution . . . . 43

4.3 Violin Plot Showing (Lack of) Normality for J4.8 Runtimes . . . . . . . . . . . 48

4.4 Plot of Accuracy by First N Packets for J4.8 and AdaBoost+J4.8 . . . . . . . . 51

4.5 Plot of Runtime by First N Packets for J4.8 and AdaBoost+J4.8 . . . . . . . . 52

4.6 Zoomed in Plot of Accuracy by First N Packets for J4.8 and AdaBoost+J4.8 . . 53

4.7 Ratio of Time Training and Runtime of AdaBoost+J4.8 to J4.8 . . . . . . . . . 55

vii



List of Tables

Table Page

3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Factor Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Statistical Difference in accuracy for All 5 Algorithms . . . . . . . . . . . . . 41

4.3 Statistical Difference in Runtime for All 5 Algorithms . . . . . . . . . . . . . . 43

4.4 Means for Flow Length Comparsion J48 . . . . . . . . . . . . . . . . . . . . . 46

4.5 Statistical Difference of Accuracies in J48 by Flow Length Analyzed . . . . . . 47

4.6 Statistical Difference of Runtimes in J48 by Flow Length Analyzed . . . . . . . 47

4.7 Means for Flow Length Comparison AdaBoost+J48 . . . . . . . . . . . . . . . 50

4.8 Statistical Difference of Accuracies in AdaBoost+J48 by Flow Length Analyzed 54

4.9 Statistical Difference of Runtimes in AdaBoost+J48 by Flow Length Analyzed 54

4.10 Statistical Difference of Accuracies and Runtimes . . . . . . . . . . . . . . . . 57

A.1 J4.8 Performance with Flow Length as Packets . . . . . . . . . . . . . . . . . 63

A.2 J4.8 Performance with Flow Length as Mircoseconds . . . . . . . . . . . . . . 64

A.3 Features with Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.4 J4.8 Performance with Flow Length as Packets and Timing Features . . . . . . 66

A.5 J4.8 Performance with Flow Length as Microseconds and Timing Features . . . 67

A.6 Means for Flow Length Comparison J48 No Google Docs . . . . . . . . . . . . 69

A.7 Means for Flow Length Comparison AdaBoost+J48 No Google Docs . . . . . 70

viii



List of Acronyms

Acronym Definition

ARFF Attribute-Relation File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CF Confidence Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

DoS Denial of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

DPI Deep Packet Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

FFT Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

FIS Flow Identification System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

FP False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

FTP File Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

GMU George Mason University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

GP Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

HMM Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

HTTP HyperText Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

IANA Internet Assigned Numbers Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

IDS Intrusion Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ISP Internet Service Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

MITM Man-in-the-Middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

ML Machine Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

NBTree Naı̈ve Bayes Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

P2P Peer-to-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PKI Public Key Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

PPTP Point-To-Point Tunneling Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

ix



Acronym Definition

QoS Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

RAM Random Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

RFC Request for Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

RIPPER Repeated Incremental Pruning to Produce Error Reduction . . . . . . . . . . . . . . 22

SaaS Software as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

SACK Selective Acknowlegment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

SPI Shallow Packet Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

SSH Secure Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

SSL Secure Socket Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

SUT System Under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

SVM Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

TCP Transmission Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

TLS Transport Layer Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

TN True Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

TPR True Positive Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

UDP User Datagram Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

VOIP Voice Over IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

VPN Virtual Private Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

x



CLASSIFICATION OF ENCRYPTED WEB TRAFFIC USING MACHINE LEARNING

ALGORITHMS

I. Introduction

1.1 Problem Definition

Network analysis is a useful and sometimes critical tool in network administration.

It is used by Internet Service Providers (ISPs) to monitor the traffic on their networks

and provide a consistent Quality of Service (QoS) to their customers [9]. Network

administrators can employ network analysis tools that detect malware intrusion and

data exfiltration, enabling automatic blocking and reporting of such communication [8].

However, encryption interferes with analysis of this communication [8]. Many traditional

network analysis devices cannot effectively analyze encrypted network traffic.

More and more applications are moving to the cloud and using web-based services [10,

18]. These web based services often use encrypting network protocols such as Transport

Layer Security (TLS) [16, 44, 50]. As the amount of TLS traffic increases, the ability to

examine TLS flows for security risks becomes more important.

1.2 Goals

This research provides a method of quickly classifying a web service within an

encrypted network traffic flow. Previous research has analyzed the ability of Machine

Learning (ML) algorithms to classify applications and protocols associated with network

traffic [33]. Further research shows the feasibility of using ML algorithms to determine

whether a single application is associated with an encrypted traffic flow from a mix of

other traffic [5]. ML algorithms are also useful in near real-time classification of network

1



traffic [11]. This research builds upon previous research by measuring the efficacy of ML

algorithms in classifying 16 types of web services within TLS flows. It is hypothesized that

the tested ML algorithms will be able to successfully classify web services associated with

encrypted network flows. It is further hypothesized that the accuracy and runtime of the

ML algorithms will increase as the amount of the network traffic flow analyzed increases.

The high-level motivating goal of this research is to improve the ability of network

analysis devices to reduce malware intrusion and data exfiltration via encrypted network

communications. While the technique analyzed in this research does not attempt to

identify particular instances of intrusion or exfiltration, it does enable the enforcement of

broader policies to mitigate these risks. By classifying encrypted web services, network

administrators can detect and prevent the use of unapproved web services. This motivating

goal drives two low-level quantifiable research goals.

The first goal is to assess which ML algorithms are likely to perform well in classifying

encrypted web traffic. Initial experiments are run to test each of five ML algorithms over

an identical set of traffic. The algorithms that perform the best with respect to accuracy and

runtime are used for the remainder of the experiments.

The second goal of this research is to determine how many packets are necessary to

reach an acceptable classification accuracy. The runtime and accuracy are hypothesized

to increase as the number of packets analyzed increases. While a solution that optimizes

both metrics probably does not exist, this research quantifies each metric individually for

increasing flow lengths analyzed, starting from the beginning of the flow. The beginning of

the flow is used due to success in previous research.

1.3 Overview

This chapter defines the goals of this research and the problem it sets out to solve.

Chapter 2 describes the basics of network analysis, network encryption, ML, and how they

interact before reviewing the current literature in this field of study. Chapter 3 discusses

2



the experimental setup, including the generation of the test data, and how the performance

of the ML algorithms is measured. Chapter 4 reports the findings of the experiments.

Chapter 5 discusses the conclusions drawn from this research and the suggestions for future

work.

3



II. Background

2.1 Introduction

This chapter presents the theory and background information necessary to understand

the following chapters. Section 2.2 briefly reviews network protocols. Section 2.3

discusses the basics of network analysis. Section 2.4 discusses the current state of network

encryption. Section 2.5 defines ML and the ML algorithms used later is this research.

Section 2.6 outlines the current solutions for analyzing encrypted network traffic and the

past research done in the field.

2.2 TCP/IP

Transmission Control Protocol (TCP) and Internet Protocol (IP) are the principal

protocols of the Internet [28]. IP is a networking protocol used for communication between

nodes in the Internet [28]. IP sends data messages in small bursts known as packets. These

packets consist of two parts, the header and the payload [39]. The header contains enough

information for the packet to reach its destination [39]. TCP is used to provide reliable

communication and is usually encapsulated as the IP payload [28]. TCP also uses a header

and payload, with header flags for connection management, a checksum for validation, and

fields for verfiying all packets were received [40]. If an Ethernet connection is used between

two nodes in the Internet, the IP packets are encapsulated within an Ethernet frame [27].

Figure 2.1 shows the fields within Ethernet, TCP, and IP headers.
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2.3 Network Analysis

Network analysis plays an important role in network security. With the threat

of malware increasing, many network administrators have deployed tools to perform

network analysis, with the intent of preventing intrusion. These tools, known as Intrusion

Detection Systems (IDSs), inspect all incoming traffic to determine if any is malicious [9].

Organizations whose network contains sensitive information have also deployed systems

that monitor traffic leaving their network to detect and prevent sensitive data from being

stolen over their network [8]. Rather than concerning themselves with malicious or

sensitive data, ISPs use network analysis to maintain QoS for their customers [35]. They

maintain QoS by prioritizing network traffic based on the type of traffic, or the application

creating and using the traffic. Some network applications require a constant stream

of packets to function properly, while others, such as Peer-to-Peer (P2P) applications,

download large amounts of data, but do not have a strict timing requirement [35]. An

estimated 50%-70% of Internet traffic is P2P [25]. By prioritizing the time sensitive

traffic and throttling bandwidth intensive, time-insensitive traffic ISPs can better serve their

customers. Network Analysis applications use either Shallow Packet Inspection (SPI) or

Deep Packet Inspection (DPI) (or some combination of the two). These two distinct forms

of network analysis use different analytical tools to determine the type of information

traversing the network.

The network analysis tools designed to control malware intrusion and data exfiltration

are primarily concerned with analyzing the network communication between a set of

controlled computing systems on a protected network and uncontrolled computing systems

external to the protected network [11, 30]. ISPs face a different problem in that they do

not control the end-point machines internal or external to their network. Instead, ISPs seek

to monitor communication internal to their network, in addition to communication coming

and going from their network, for the purpose of providing QoS for their customers [35].
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SPI is a type of network analysis that only inspects the headers of packets, including

the information in the TCP/IP headers used to route traffic [14]. This involves analyzing

information such as: source transport layer address (source port), destination transport

layer address (destination port), source IP address, destination IP address, and the transport

layer protocol [14]. Depending on the transport layer protocol, other information in the

header, such as flags, could also be used. The source and destination IP addresses can

be used to validate certain rules. Some government organizations might block or log all

traffic that comes or goes to foreign IP addresses [30]. Many protocols have assigned ports,

and comparing the port number to a known list may indicate which application generated

the traffic [19]. Timing characteristics can also be used to analyze the traffic [32, 33].

For example, HyperText Transfer Protocol (HTTP) traffic: “80% of HTTP requests occur

within three seconds of each other. 95% occurs within a minute and a half” [8], HTTP

traffic that does not follow the expected pattern can be flagged as abnormal. Typically

HTTP traffic occurs in short bursts as pages load, with timing gaps while the endpoint user

consumes the information [8]. Continuous streaming of HTTP traffic, depending on the

direction of traffic, could indicate uploading or downloading files larger than traditional

web pages such as media or large files on disk.

DPI analyzes the entire packet, including the header and the payload [14]. By

analyzing the payload of the packet, the inspection tool can analyze all information that

is traversing the network, not just the type of information and where it is going. This

analysis compares the contents of messages against a list of predetermined signatures [23].

These signatures are typically produced from parts of known documents or files that the

administrators of the DPI device want to block or log [19]. For example, DPI devices

that are configured to inspect incoming traffic can compare the traffic to a list of signatures

generated from a collection of known malware. The DPI device would then be able to detect

if any of the malware on the list is in an incoming message. To prevent data from evading
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detection by being segmented into multiple messages, DPI devices cache all messages per

communication stream and reassemble the full stream [20]. A similar setup is used to

prevent and/or detect sensitive data exfiltration. Sensitive files and documents can be used

to form signatures and the signatures are stored in a collection. The DPI device just needs

to reassemble outgoing messages and compare them to the signatures of sensitive data. If

sensitive data is found in an outgoing communication stream, the DPI device can end the

communication stream and/or log the breach. Research has been done supporting the use

of DPI devices to block certain websites; Yu, Cong, Chen, and Lei [52] suggest hashing the

domains of pornographic and illegal websites so ISPs can eliminate access to them.

DPI tools face a number of challenges to successful operation. Since the DPI tool

sits between endpoints within a protected network and the outside world, it adds delay to

all traffic that passes through it [20]. The DPI device needs to take delay into account

and implement a solution that adds a tolerable delay to the traffic delivery. The slower the

DPI device, the more traffic it must handle at a given time [20]. Consider the scenario

of one message arriving every second: if the device can process each message in less

than one second it will continue to operate correctly. If the device takes longer than one

second to analyze each flow the messages will arrive faster than it can process, and the tool

will quickly have more traffic cached than it can handle. If the amount of traffic passing

through the DPI tool exceeds the amount of traffic the tool can handle, it either blocks

excess traffic, or allows uninspected traffic through. In the first scenario users inside the

protected network or users attempting to communicate with systems inside the protected

network will experience a dropped connection, and suffer effects equivalent to a Denial of

Service (DoS) attack. If the latter happens, the DPI tool has been effectively neutralized

and cannot protect the network, allowing potentially malicious traffic onto the network

and sensitive data out of the network. In order for a DPI tool to be effective it must be

able to process network communications as fast as it can receive them [14]. To mitigate
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these throughput and delay concerns for DPI tools, researchers have investigated hardware-

based solutions, such as those utilizing FPGAs [15, 37, 43, 45, 52]. The hardware-based

solutions increase the throughput of DPI devices by eliminating the extra overhead of DPI

tools on generic hardware. Researchers are also looking at accelerated data structures, such

as bloom filters [37, 52]. SPI can also face these performance concerns.

Another method for increasing DPI throughput is to only analyze the beginning of

a communication stream [9]. Research done by Braun, Munz, and Carle suggests that

this is almost as effective as inspecting the entire communication stream [9]. Inspecting

the first ten packets of the stream can identify P2P traffic and malware identification is

usually successful using only the first 1000 bytes of a communication stream [9]. They

also suggest randomly varying the size of the stream that is inspected to prevent a malicious

endpoint from padding the beginning of a communication stream to avoid detection [38].

Restricting the length of the inspected data will only be effective if the DPI device inspects

more than the padding done by an attacker. While this technique is useful for increasing

DPI device throughput, it can be circumvented by clever attackers who pad their malicious

communications with sufficient irrelevant data.

Another concern when using DPI is privacy. Since DPI involves analyzing entire

packets, including the contents of packets, users who have DPI performed on their

communication have no privacy [38]. In corporate environments where those in charge

of network administration also own and control all computing systems on the network,

privacy is not as big a concern. ISPs do not control all the computing systems on their

networks, as customers can connect their own personal computers. ISPs performing DPI

on customers’ communication is a complicated legal issue [38].

2.4 Network Encrpytion

TLS is replacing Secure Socket Layer (SSL) as the security protocol used to encrypt

the connections between internet browsers and web servers [3, 46]. Use of TLS/SSL is
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becoming more prevalent [16, 44, 50]. In fact some application vendors are switching

to Software as a Service (SaaS) business models, which would increase the amount of

applications relying on the Internet and its security protocols [10, 18]. TLS consists

of two separate protocols, the TLS Record Protocol and the TLS Handshake Protocol

both of which are defined in Request for Comments (RFC) 5246 [21]. The TLS Record

Protocol uses symmetric cryptography and requires a reliable connection, such as that

provided by TCP. The symmetric key for the TLS Record Protocol is typically negotiated

by the TLS Handshake Protocol [21]. The TLS Handshake Protocol has three basic

properties: the endpoints’ identity can be authenticated via asymmetric cryptography; the

negotiation of the symmetric key is secure, unavailable via eavesdropping or Man-in-the-

Middle (MITM) attacks; and no third party can modify the negotiation without alerting

the original endpoints [21]. TLS is designed to encapsulate other layers of traffic such as

HTTP.

The TLS Handshake Protocol includes six steps listed below from RFC 5246 [21]:

• Exchange hello messages to agree on algorithms, exchange random

values, and check for session resumption.

• Exchange the necessary cryptographic parameters to allow the client and

server to agree on a premaster secret.

• Exchange certificates and cryptographic information to allow the client

and server to authenticate themselves.

• Generate a master secret from the premaster secret and exchanged

random values.

• Provide security parameters to the record layer.

• Allow the client and server to verify that their peer has calculated

the same security parameters and that the handshake occurred without

tampering by an attacker.
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The TLS Handshake Protocol includes the option for adding extensions to the Client

Hello messages [21, 24]. These extensions provide information not required by the protocol

that will aid with opening the connection. One such extension is server name, which is

especially useful when a single physical host is running multiple virtual servers [24]. The

server name allows the phyisical host to respond with the correct certificate and initiate a

connection with the desired virtual server.

2.5 Machine Learning

Before discussing modern approaches to analyzing encrypted network traffic, a quick

background on ML is presented as it is used in many of the approaches [7, 11, 13, 22, 23,

29, 32, 33, 35, 36, 38, 47, 49, 50]. Witten et al. [48] describe Machine Learning (ML) as

changing behavior based on input to improve performance. Russel et al. [42] describe ML

as “learning to adapt to new circumstances and to detect and extrapolate patterns.” In the

papers noted above, ML was used to do exactly that: detect and extrapolate patterns. This

research focuses on using ML algorithms to detect patterns in the packet sizing information

to extrapolate and predict the type of traffic contained within a TLS flow. ML algorithms are

given inputs called samples with each sample having a set of features. These features are

either discrete—boolean is a discrete with two values—or numeric. A learning algorithm

attempts to use the samples’ features to infer something about the samples [48].

Witten et al. [48] describe four types of machine learning: association learning, clus-

tering, numeric prediction, and classification learning. In association learning the ML al-

gorithm attempts to find associations between samples. Clustering algorithms attempt to

divide the samples into clusters, or categories, based upon their features. Numeric predic-

tion algorithms attempt to predict a numeric value given the samples [48]. Classification

algorithms, the kind used in this research, take samples—consisting of features and an as-

sociated label—and attempt to predict the label of future unlabeled samples. Classification

ML algorithms are a subset of supervised learning algorithms because they are trained with
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previously labeled samples as opposed to clustering algorithms which are just given unla-

beled samples to discern distinct groups automatically [48]. Classification algorithms have

two stages, training and classifying [48]. Training occurs when the algorithm is given the

labeled samples, classifying occurs when labels are predicted for the new unlabeled sam-

ples. There are many kinds of classification algorithms; this research focuses on the J4.8

decision tree, a variant of C4.5 [48].

2.5.1 Statistical Classifiers.

Naı̈ve Bayes is a classification algorithm that relies on Bayes’ rule of conditional

probability [48]. The mathematics will not be delved into here as this algorithm is only

briefly discussed, but Naı̈ve Bayes is used extensively in this field [13, 22, 32, 36, 47].

Support Vector Machines (SVMs) are another type of ML algorithm. The SVM uses

mathematical methods to represent the feature set in a higher dimensional space, where

different labels are linearly separated [17]. This is an oversimplified explanation as a full

description would be too verbose for this discussion. For a full definition of SVM and other

kernel-based ML algorithms refer to [17].

2.5.2 Decision Trees.

Decision trees use a divide-and-conquer method to classify inputs [48]. Decision trees

consist of two types of structures, leaves and decision nodes [41]. A leaf indicates which

label—or class—is used as the final classification for the decision tree [41]. A decision

node has a condition and a sub decision tree for each possible outcome of the condition [41].

Figure 2.2 shows a very simplistic decision tree. The diamonds are decision nodes and the

ovals are leaves. When using a decision tree for classifying, the features are compared at

each subsequent node and a new branch is taken; the input features are classified when a leaf

is reached [41]. Decision trees can be efficiently implemented as nested if-else blocks [11].

They can also be simplified as rules [41]. The rule for finding a duck in the decision tree

given in Figure 2.2 would be: if and only if it walks like a duck and quacks like a duck
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is it a duck. Different decision tree algorithms use different techniques to create the final

decision tree, as finding the ideal decision tree is NP-complete [41]. The creation of the

decision tree is the training part of the ML algorithm.

Does it walk like a 
Duck?

Does it quack like a 
Duck?

Duck!Penguin

Platypus

No

No

Yes

Yes

Figure 2.2: Sample Decision Tree

A Naı̈ve Bayes Tree (NBTree) is a combination of Naı̈ve Bayes and decision trees,

where the leaves are Naı̈ve Bayes classifiers [48]. Again, the full description of the NBTree

is outside the scope of this research, but they have been used with promising results in this

field [47].

J4.8 is the decision tree algorithm used in this research. It is an open source Java

implementation of C4.5 [48], which is widely used [7, 11, 29, 33, 35, 36, 47]. C4.5 was

created by Ross Quinlan [41] and is completely defined, with source code, in his book.

Only a quick summary of C4.5 is given here, for the full description refer to Quinlan’s
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book. C4.5 builds the decision tree by iterating over the training samples and making

modifications to the tree. As with most decision trees, deciding what node to insert

is determined by maximizing some gain criterion of inserting that node [41]. ID3, the

predecessor to C4.5—also written by Quinlan—used information gain [41]. Quinlan’s

definition of information is similar to entropy and is measured in bits. In the initial

publication of C4.5 Quinlan points out an inherent flaw in using information gain: it favors

conditions with more outcomes [41]. C4.5 instead relies on the gain ratio, which is defined

as the information gain divided by the potential information of dividing the tree into the

resulting number of outcomes. In addition to maximizing the gain ratio when creating

decision nodes, C4.5 further imposes the following constraint: “the information gain must

be large—at least as great as the average gain over all tests examined” [41].

There are two possible types of features in the standard form of C4.5: discrete and

numeric. If a condition of a decision node is based on a discrete feature then the decision

node will have a split for each possible value of the feature [41]. If the feature is numeric

then the tree will split with a less-than-or-equal and a greater-than condition. When

choosing the split value for a numeric condition, C4.5 uses the largest feature value that

is less than the median [41]. Since all samples must share the same set of features, a

common problem in ML is unknown features [41, 48]. That is to say, if height is a feature

of an object, all samples must have a listed value for height, though the values may differ

or be listed as unknown. If the current condition is testing an unknown feature, C4.5 takes

the previously most common branch. Decision nodes are inserted into the tree to maximize

gain ratio and creation of nodes stops when the gain ratio requirements of adding a decision

node cannot be met [41].

One common problem with ML algorithms is overfitting [41, 48]. Overfitting occurs

when the trained algorithm too closely resembles the training dataset and is not general

enough to accurately classify samples not used in training [48]. C4.5 uses pruning to reduce
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the problem of overfitting [41]. Although multiple pruning methods are discussed by

Quinlan, C4.5 uses reduced-error pruning [41]. The pruning method begins by examining

leaves and working its way up the tree. If replacing a parent node with a leaf or child

produces an acceptable error rate, then the replacement is made. Quinlan defines the error

rate for pruning as the number of items incorrectly classified by that branch divided by

the total number of items classified by that branch [41]. C4.5 uses an input parameter of

Confidence Factor (CF). A higher CF indicates a higher probability that data used in future

classifications is similar to the training data. The more similar future data will be to the

training data, the less pruning required [48]. Upper and lower limits on the error rate are

calculated based on the CF. Quinlan describes his method of determining when to prune as

doing “violence to statistical notions of sampling and confidence limits” [41]. He further

states, “Like many heuristics with questionable underpinnings, however, the estimates it

produces seem frequently to yield acceptable results” [41]. Witten et al. define this method

of replacing parent nodes with child nodes as subtree raising [48].

The final charactersitic of C4.5 to discuss is windowing. A window is a subset of

the samples used to train. The size of the windows are controlled by input parameters.

C4.5 builds a decision tree using the initial window. The next window is built by adding

approximately half of the samples incorrectly classified when classifying the samples not

in the original window [41]. This new window is used to create a new tree. C4.5 ensures

the windows chosen have the same distribution of labels as the entire training dataset [41].

Additional windows are considered until a tree is found that has no incorrect classifications

on samples outside the training windows, or the newly created trees are worse than the

previous trees [41]. For the complete definition of C4.5 please see Quinlan’s book [41].

2.5.3 Metalearning Algorithms.

Metalearning algorithms are used to increase the learning power of other ML

algorithms [48]. AdaBoost, an example of a metalearning algorithm, boosts other ML
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algorithms by iterating over multiple created classifiers of the boosted algorithm in an

attempt to lower their error [48]. Many ML algorithms use weights, including C4.5—

which uses them for unknown features—when creating classifiers. AdaBoost assigns equal

weights to all samples then uses the boosted algorithm to create a classifier and calculate

the classifier’s error. On subsequent iterations AdaBoost modifies the weights in favor of

the samples which are incorrectly classified and creates new classifiers, again calculating

their error. This cycle is repeated until the error of the new classifier is zero or is greater

than 0.5 [48]. When used to classify data, Adaboost iterates over all generated models and

returns the classification with the highest weight [48]. AdaBoost has been used successfully

in this field to improve classification accuracy [29].

2.6 Encryption and Network Analysis

2.6.1 Deep Packet Inspection.

Deep packet inspection relies on the ability to compare the communication on the

network to known signatures. When the traffic being analyzed has been altered, whether

by obfuscation or encryption, simply scanning the traffic for known signatures will not

successfully detect the signatures [8]. When faced with encrypted traffic, a DPI device

has four options. First, the device can block all encrypted traffic from entering or leaving

the network. This will prevent malicious traffic from entering the network and sensitive

data from leaving the network. Unfortunately secure traffic is often required and this

option severely limits the capabilities of the network. Second, the DPI device can allow

all encrypted traffic through. While this would not interfere with the normal use of the

network or applications requiring secure communication, it would hinder the DPI device’s

capabilities to prevent malware intrusion or sensitive data exfiltration. Another possibility

is to rely on the information in each packet that is not encrypted, essentially performing SPI

on encrypted traffic. This has merits in providing both QoS and application classification,

and is a good first step, but as discussed in the next section, it cannot—on its own—restore
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the ability of the DPI device to detect malware intrusion and sensitive data exfiltration. The

fourth and final option is to circumvent the encryption on the secure communication for

the purpose of inspection. If the DPI device can inspect the decrypted data, it can allow

the communication to pass through the device with the assurance that the device performed

as well as it would have on unencrypted communication [23]. Secure traffic that cannot

be decrypted can use any of the other three options depending on the needs of the system.

General problems with the fourth option are discussed below. SPI on encrypted traffic is

the focus of this thesis.

2.6.1.1 Current DPI Solutions.

Commercial tools currently exist that circumvent the encryption of encrypted network

traffic to allow the deployment of an inspection device that analyzes the unencrypted

contents of each flow [2]. These devices act as a gateway for all encrypted traffic that

enters or exits a network [2]. This is done by making the inspection device a certificate

authority that is trusted by all machines on the network. This lets the device replace

server certificates—and client certificates if they exist—with a new certificate that allows

the device to eavesdrop on communication. When the client views the newly generated

certificate it can confirm it is communicating with a trusted entity. This setup enables each

endpoint to communicate with the inspection device securely, and allows the inspection

device to decrypt, inspect, and re-encrypt all messages before sending them to their

original destination. It is also worth noting that this design does not explicitly handle

the case of symmetric encryption if the key is shared outside of a viewable network

communication. That is to say any secure communication that relies on a shared key to

which the DPI device does not have access will not be available for inspection. If a Public

Key Infrastructure (PKI)-based encryption scheme is used to share a symmetric key, such

as the TLS Handshake Protocol, the DPI device could detect the shared key and use that to

decrypt any further encrypted traffic in that communication stream.
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This design faces a number of problems that need addressing. First, as with most DPI

implementations, performance is a concern [19]. Weaknesses in DPI devices caused by an

overwhelming amount of traffic have already been discussed. Adding the requirement to

issue and cache certificates for all secure communication streams and handle the decryption

and encryption of traffic will add more delay to the DPI device. Not only could this delay

cause concerns for the end users of the system, but the increase in delay also prolongs the

amount of time connections must be monitored by the DPI device.

A DPI device that doubles as a certificate authority also faces the problem of

successfully detecting all encrypted traffic. The DPI device will not easily detect any

data that is encrypted on an endpoint before any communication is begun, and then uses a

normally unencrypted communication protocol to transmit the obfuscated data [19]. The

DPI device will also not be able to recognize signatures or regular expressions in obfuscated

communication.

Intercepting and decrypting all encrypted traffic also adds a new vulnerability to the

system. Since the DPI device is universally trusted on the network, a compromise to the

DPI device compromises the entire network. If an attacker can monitor the memory of the

DPI device, either through physical access or malicious code, they can see the contents of

all network traffic regardless of encryption. If an attacker gains access to the DPI device’s

private key, they can issue their own certificates that will be trusted by every system on

the network. This makes it possible for the attacker to have every communication sent to

the systems trusted. This single point of security failure means that a DPI device acting

as a Certificate Authority must have protection, both physically and in the cyber realm.

Vulnerabilities have been found in currently-available devices that function this way, as

reported by the vendor [1].

A third problem is invasion of privacy [38]. While an organization that owned or

controlled all systems on its network could enforce a certificate being installed on every
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system, an ISP would have a much harder time forcing the same requirement on its

customers. While some private companies and the government have cause to monitor all

traffic entering and leaving their controlled networks, an ISP might have trouble convincing

customers to install the ISP’s certificates, allowing the ISP to view all encrypted traffic

directed to or from their customers.

2.6.2 Shallow Packet Inspection.

Encryption changes the characteristics of network traffic, which can have negative

impacts on SPI. Multiple applications can use the same protocol—or lower level

application—for encryption, resulting in the traffic from all the applications using the same

port [38]. Many P2P applications use encryption and random ports to evade network

analysis tools [26]. The use of proxy servers can also prevent a network analysis tool

from correctly determining the source or destination of network traffic. Timing and sizing

analysis can be used to gather information about encrypted network flows. If ISPs have the

ability to accurately determine what applications are communicating on their network—

even if the communication is encrypted—then ISPs can limit applications as necessary to

preserve QoS [38]. Research has been done using ML algorithms to identify applications

utilizing both unencrypted and encrypted network traffic flows [7, 11, 29, 33, 35, 36, 47].

Some of the research in this field cites the privacy concerns created by DPI as a main reason

for using SPI [38]. While these solutions cannot accurately detect malware or sensitive data

traversing a network, they can provide other information, such as the application within the

network traffic flow. This is ideal for ISPs looking to preserve QoS and gives commercial

and government organizations the ability to enforce application restrictions or to further

inspect specific application traffic using another method. Some of the techniques and results

of SPI are discussed below.

In 2005, Moore and Zuev [33] published a list of 249 formally defined features—

called discriminators—designed to be used in statistical analysis of traffic flows. Timing
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and sizing information from a bi-directional traffic flow are used to calculated most of

the features. This set of features, or a subset, are frequently used [29, 32, 38] and this

research uses a subset, which is defined in Section 3.3. They also defined a network traffic

flow by the 5-tuple of source IP address, destination IP address, transport layer protocol—

often TCP or User Datagram Protocol (UDP)—source port number, and destination port

number. In 2005, Moore and Zuev [32] also published a paper using Bayesian analysis

techniques with this feature set. They used 377,526 manually classified flows, which had

10 distinct labels [29]. The majority of the traffic flows analyzed were unencrypted. Using

port numbers as a feature, they were able to achieve accuracy of 96.29% with a combination

of fast correlation-based filter, Naı̈ve Bayes, and kernel density estimation. The paper

also reports a drop in accuracy ranging from 1% to 56% depending on classification

method when using samples captured months apart for training and classifying. The best

classifier—defined by highest accuracy—only dropped from 96.29% to 93.73%. This

indicates that any classification process relying on network statistics should be updated

regularly especially when the network changes.

In 2006, Williams et al. [47] published a comparison of five ML algorithms—

BayesNet, C4.5, two variations of Naı̈ve Bayes, and a Naı̈ve Bayes tree—with four

methods of feature reduction when classifying unencrypted traffic flows. The labels for the

samples were determined by port number. In addition to classification accuracy, Williams

et al. measured the build and classification times of the ML algorithms. C4.5 was the

fastest algorithm for every feature set, with 54,700 classifications per second for the full

feature set. It was also the most accurate when given the complete feature set. NBTree

had comparable accuracy, but was approximately ten times slower classifying and sixty

times slower when training, for the full feature set. BayesNet and one of the Naı̈ve Bayes

variations had only slightly lower accuracy, but were still at least 20% slower than C4.5

when classifying. And although C4.5 was the second slowest of the ML algorithms to train,
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the combined highest accuracy and fastest classification time lead the authors to conclude

that C4.5 is the best for real-time classification.

In 2007, Moore and Li revisit the same datasets and labels that Moore and Zuev

studied in 2005 [29]. This time Moore and Li compare the previously best Naı̈ve Bayes

based classifier against C4.5 and C4.5 with AdaBoost. The authors only use the first five

packets of the flow to classify the traffic. Once again the data is hand classified and port

numbers are used as features. C4.5 is again the most accurate of the ML algorithms and

the fastest in classification with an accuracy of 99.8%. The high accuracy is due, at least

in part, to the inclusion of port numbers in the feature set. The bulk of the traffic analyzed

is Web-browsing, Mail, and File Transfer Protocol (FTP) all of which have well defined

Internet Assigned Numbers Authority (IANA) port numbers [7]. In 2009, Moore and

Li collaborated with Canini and Zadnik to produce a network edge device that classifies

network traffic flows using techniques defined in their early works [11]. The device takes

advantage of the increased speeds of using an FPGA and the simplicity in programming a

decision tree—specifically C4.5—to fully classify traffic in a full-duplex 1 Gbps line. Their

product, the AtoZ automatic traffic organizer, is well detailed in [11] and is a good example

of practical uses of this type of research.

Joint research by Osaka City University and the Oki Electric Company outlines a pos-

sible implementation that utilizes ML to accurately identify applications communicating

securely on a network [38]. They obtained their data by classifying traffic using DPI before

it entered a Virtual Private Network (VPN), then encrypting the traffic with either IPsec or

Point-To-Point Tunneling Protocol (PPTP). The feature set for this research is a subset of

the features defined in [33]. Their experimental results show accuracy as high as 97.4%

between four labels, depending on the applications and type of encryption [38].

Alshammari and Zincir-Heywood have published numerous papers in classifying

encrypted network traffic flows. In their research they make a case for the importance of
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identifying applications within encrypted network traffic flows to IDS and QoS tasks [7].

They also discuss the ease of using non-standard ports in encrypted traffic as a first step in

anonymyzing data, and the importance of not using port numbers for identfying network

traffic flows [4–7]. In 2008 they test ML algorithm effectiveness in detecting Secure

Shell (SSH) traffic when presented with a mixture of 12 types of traffic flows [4]. Although

there are multiple traffic types, rather than attempt to classify them all, they only label flows

as either SSH or non-SSH. The authors come to the conclusion that C4.5 is preferable

to Repeated Incremental Pruning to Produce Error Reduction (RIPPER) due to C4.5’s

detection rate of above 99% [4]. In [5] they attempt to distinguish two encrypted traffic

types, SSH and Skype traffic, using C4.5, SVM, and Naı̈ve Bayes. Once again they do

not use IP addresses, port numbers, or payload data to detect SSH. C4.5 had the highest

detection rate with 99.6%. In [6] the authors continue to use ML algorithms to classify

encrypted network traffic flows, without port numbers, IP addresses, or payload information

and use four datasets—three captured in the real-world and one simulated—for testing.

This research compares SVM, AdaBoost with decision stumps, Naı̈ve Bayes, C4.5, and

RIPPER across all four datasets, when trying to detect either SSH or Skype traffic. C4.5

produced the highest accuracy across all captured datasets and SVM produced the highest

accuracy for the simulated dataset. They also show a drop from 97% to 83.7% detection

rate for the C4.5 algorithm when testing over a different dataset than training. While this

is not as good as training and testing on the same set, they claim the 83.7% detection rate

shows robustness in C4.5 and demonstrates its feasiblity in use across networks. In 2011,

Alshammari and Zincir-Heywood compared C4.5, AdaBoost with decision stumps, and

team-based Genetic Programming (GP) [7]. They compared the three learning algorithms

when attempting to detect SSH traffic in a mixture of other traffic. They also trained

on feature sets generated from one dataset and tested on the other networks. C4.5 once

again out-performed the other algorithms when detecting only SSH or Skype traffic on
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the network on which it was trained. C4.5 and team-based GP performed comparably

when classifying traffic on networks not used for training. They report team-based GP

outperforming C4.5 when classifying applications within SSH tunnels.

In 2012, Nguyen et al. discuss the need for “timely and continuous” classification [36].

They define timely classification as not relying on the entire flow for classification, but

rather using a predefined number of consecutive packets. They also define continuous

classification as not relying on the beginning of the flow, but rather the classifier should

be able to classify a traffic flow when given a middle subset of the flow. A timely and

continuous network traffic flow classifier should be able to classify flow based on any subset

of consecutive packets with the predefined length. To test the feasibility of using timely and

continous classification they test C4.5 and Naı̈ve Bayes on a sliding window of consecutive

packets, with varying packet lengths. The dataset used for their experiments came from a

network capture with two application types for classification, a game—Wolfenstein: Enemy

Territory—and Voice Over IP (VOIP). Both algorithms had performance degradation when

classifying data that did not include the beginning of the flow. The authors attribute this,

in part, to the classifier no longer knowing the direction of the flows; i.e., it could not

distinguish client from server. C4.5 and Naı̈ve Bayes performed similarly. The authors

conclude that when classifying on consecutive packets that do not include the beginning of

the flow, the features used to train should include subflows that do not use the intial packets

as well. The authors also report that subflows that begin a thousand packets into a flow

have better precision and recall than subflows that are between one and ten packets into

the subflow. This indicates that flow features reach a steady state over time. The research

presented in the following chapters of this paper studies the timely but not continuous

classification of many types of TLS traffic.

In 2004, Wright et al. built a Hidden Markov Model (HMM) to classify network

traffic [49]. They used a dataset created from real network captures at George Mason
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University (GMU). The GMU dataset determined the labels of the flows by port number.

They recognize this is not 100% true, but needed a method to automatically classify enough

traffic for testing their HMM methods. They had accuracy ranging from 29% to 86.4%

with the best model depending on the type of traffic. In 2006, they published another

paper yielding better results with the same dataset [50]. They rely solely on packet timing,

sizing, and direction information. No data is collected from TCP/IP headers. They report

detection rates from 75% to 100% when using eight types of flows with aggragate traffic.

When classifying actual traffic flows, the reported accuracy ranges from 57.7% to 96.7%

depending on the traffic type. Wright et al. also worked on tracking the number of

connections within a single encrypted tunnel.

In 2009, Wright et al. [51] published a technique, called traffic morphing, that made

one type of network traffic resemble another with the intent of hiding traffic from ML

analyses. They report successfully lowering the accuracy of a Naı̈ve Bayes classifier

from 98.4% to 63.4%. In 2012, Dyer et al. publish a report about overcoming traffic

morphing and other counter measures that rely on padding [22]. Dyers et al. test multiple

classifiers on three datasets and attempt to classify the websites. The authors report Naı̈ve

Bayes and SVM perform comparably and return accuracies greater than 60% against all

countermeasures.

2.7 Summary

This chapter presents background information to understand the research and

contributions described in the following chapters. The need for network analysis—

especially of web service traffic—is given, followed by the current solutions and problems

in network analysis. TLS and ML algorithms are also discussed with a focus on C4.5 and

AdaBoost, due to their prevalence in the following chapters.
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III. Methodology

This chapter describes the methodology for testing the effectiveness of five ML

algorithms in classifying the web services within encrypted network traffic flows.

Section 3.1 discusses the goals of the research, the hypotheses tested, and the approach

used. Section 3.2 introduces the system being tested and the inputs and outputs of the

system. Section 3.3 describes the dataset used to test the ML algorithms and how it was

created. The chapter concludes by describing the factors used in the experiments, how they

are evaulated, and the experimental design.

3.1 Problem Definition

3.1.1 Goals and Hypothesis.

The goal of this research is to determine the effectiveness of ML algorithms in

classifying a web service associated with a TLS traffic flow. ML efficacy is determined

by classification accuracy, as defined in Section 3.5. It is hypothesized that the tested ML

algorithms will successfully classify web services associated with encrypted network flows.

In addition to determining whether the ML algorithms can classify the data, this research

further analyzes how many packets of the flow are necessary to classify that flow. It is

expected that shortening the amount of time on which the features are calculated decreases

the accuracy. The time necessary to train a ML algorithm and the amount of time required

to classify flows using the algorithm is also discussed.

3.1.2 Approach.

The strategic goal of this research effort is to prevent data exfiltration through

encrypted communications. Due to the nature of encryption, network security devices

that rely solely on DPI cannot detect data exfiltration in encrypted traffic. By measuring

the effectiveness of ML in classifying encrypted network traffic flows, this research will
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increase the ability to detect data exfiltration. While determining the web service is not

sufficient to definitively determine a network traffic flow as containing sensitive data, it

is a necessary first step. This research focuses on classfiying encrypted web services due

to TLS’s increasing prevalence. Determining the web service can be used for broader

policies. For example, some web services such as social networking could be in violation

of network policy. Others, such as web mail, could be considered high risk and warrant

additional inspection.

This experiment uses real world data to test the efficacy of ML algorithms in

classifying the application within an encrypted flow. By using features calculated directly

from real-world network traffic flows—where the web service is already known—as input

samples to the ML algorithm, the accuracy of the ML algorithm when classifying the

endpoint web service can be directly measured.

3.2 System Boundaries

The System Under Test (SUT), shown in Figure 3.1, is the Flow Identification System

(FIS). The FIS consists of the ML framework and the computer on which the framework

runs. The ML framework includes two components: one that trains—or creates—the

ML classifier, and one that uses the ML classifier to classify network traffic flows. Both

components of the ML framework are under test as the classifier’s accuracy is dependent

upon the trainer. Encrypted flows are given to the trainer which generates the classifier

used in the second component. The encrypted flows are given to the SUT as an Attribute-

Relation File Format (ARFF) file. ARFF is a file format that stores the traffic flow as a

label and a list of attributes. The attributes include the sizing information of the traffic flow.

These attributes are discussed more in Section 3.3 and are used as the classifying features

for the ML algorithm. When the ARFF files are used for training, the label is included for

each traffic flow. The ARFF files constitute the workload for the SUT.
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In addition to this workload, there are system parameters that affect the accuracy of

the ML framework. These parameters control how the ML classifier is created and are

discussed in more detail in Section 3.6.

The flows used to train and test the ML algorithm are collected from a single computer

network as described in Section 3.3.1. It is expected that different computer networks

will produce different results [6, 7]. While a ML algorithm trained on one network is not

expected to be as accurate on another network, it is expected that the results from this

research effort can still apply to other networks if the training and classification data comes

from the same network. However, the accuracy of the algorithms is expected to decrease

as differences between the data used to train and test the classifiers increase.
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Figure 3.1: Flow Identification System

3.3 Workload

The workload of the SUT consists of the encrypted flows. The amount of time

necessary to classify each flow is dependent upon the how the classifier was trained. ML

classifiers are entirely dependent upon the network flows used to train the ML algorithm.

The following parameters are used when creating the workload.
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• Flow length analyzed

The amount of the network traffic flow analyzed when calculating the features is

defined as the number of packets from the beginning of the flow, referenced as the

First N Packets. Nguyen et al. showed using the beginning of the flow to be more

accurate in their research, and using the beginning of the flow allows for the least

delay in classifying [36]. The accuracy of the ML algorithm is expected to decrease

as N decreases. Connection-based traffic consists of three basic parts: handshake,

communication, and teardown. A decrease in N will remove the teardown stage and

limit the information the ML classifier has to classify the traffic flow. As the amount

of data used continue to decrease, the accuracy is hypothesized to decrease. The

same N is used for training and testing the ML algorithm. Appendix A includes the

results of alternate experiments where time is used to determine flow lengths. First N

packets is chosen as the defining length of flow for two reasons, its ease of use, and

the inherit additional information in using time elapsed. By using microseconds as

the primary measure, timing data are confounded with the sizing data.

• The characteristics documented and used for the ML features

In previous research Moore et al. used 249 features to describe a network traffic

flow [33]. A subset of these 249 features is used to conduct this research. Features

pertaining to the sizing and number of packets within in the traffic flows are the focus

of this research, with some additional features based on TCP flags. These features

are chosen due to their expected speed of calculation when compared to some of

Moore’s other features, such as Fast Fourier Transforms (FFTs). Little saved state

is required and simple arithmetic is sufficient to calculate all used features, making

these features efficient for a near-real-time device. The final feature set is listed in

Table 3.1. Alternate experiments are run with an additional 21 timing-based features,

as discussed in Appendix A.
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Table 3.1: Features

Feature Description

1-21*† Number of bytes in Ethernet packet

22-42*† Number of bytes in IP packet

43-63*† Number of bytes in IP and TCP headers

64-65 Number of packets

66-67 Number of packets with TCP ack flag set

68-69 Number of packets with only the ack flag set

70-71 Number of packets with TCP optional SACK Blocks

72-73 Max number of SACK blocks in a single packet

74-75 Number of packets with ack flag set and SACK information

76-77 Number of packets with TCP payloads

78-79 Number of combined bytes within TCP payloads

80-81 Number of packets with the TCP push flag set

82-83 Number of packets with TCP syn flag set

84-85 Number of packets with fin flag set

86-87 Was a packet sent allowing SACK blocks (Value is Y or N)

88-89 Number of packets with TCP urgent flag set

90-91 Number of combined bytes within packets that have urgent flag set

All values are calculated for both Client to Server and Server to Client
† –Values are also calculated across entire flow
* –Value is collected per packet and the following 7 stats are computed:

Minimum; First Quartile; Mean; Median; Third Quartile; Maximum; Variance
The first three rows have 21 features each: 7 stats for each Client to Server, Server to Client, and entire flow.
Refer to [31] for more information on Selective Acknowlegment (SACK)
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• Label

Every encrypted flow has a label. The goal of the system is to correctly label

encrypted TLS flows. The label is an important workload parameter since it almost

certainly affects the accuracy of the system. Certain labels might be recognized with

more accuracy and, even if classification is not successful for every label, accurately

identifying particular labels could still help fulfill the goal. The labels used in this

experiment are described below and listed in Table 3.2.

3.3.1 Workload Generation.

The flows for the workload are captured from a real-world research network at the

Air Force Institute of Technology. The traffic is captured continuously over a seven day

period. The seven day period is considered to be representative of a typical week for the

network. This traffic is separated into traffic flows using the same 5-tuple as Moore et al.

in [48]. 1,527,185 TCP streams are found and 991,198 UDP streams are found. Out of all

the TCP streams, 218,814—14.3%—of them use TLS. Due to ML algorithms’ need for

sizable datasets when classifying, an automated system for classifying the web services is

required [48]. Since TLS traffic has an optional field for using plain text server names when

initializing encrypted connections, tests are done to determine the frequency of the field’s

usage, and which server names are used. Of the TLS streams, 204,150—93.3%—have the

optional server name. Of those only 2,825 unique server names are used. Furthermore,

109,959—53.9% of the TLS flows with server names—are using the 17 most common

server names. All but one of those 17 server names are chosen as the labels for the dataset.

The most used server name, with 54,711 flows, is an update server. Due to the number and

small size of these flows, they are not considered in this research. Human readable forms

of the 16 selected labels with the associated number of flows are listed in Table 3.2.
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Table 3.2: Labels

Label Number of Flows

Gmail 10930

Google.com 6671

Google Plus 6502

Facebook 5154

CacWebMail 4701

iCloud 4436

Microsoft Update 4330

Google Safebrowsing 3689

Mesh Accounts 3012

Live Messenger 2028

bitbucket 1067

Metric Static 911

BlackBoard 599

Google IMAP 585

Yahoo IMAP 403

Google Docs 230

Total 55248

3.4 System Services

The FIS provides one service: classification of traffic flows. Each traffic flow is

classified by the ML algorithm as one of the labels used to train the ML algorithm. This

label is the output of the system. Table 3.2 provides a complete list of labels. For each

classification, the system is either correct (a True Positive (TP)) or incorrect. If the system
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is incorrect then it is a False Positive (FP) for the resulting label and a False Negative (FN)

for the true label. Similarly, when a TP occurs it is a True Negative (TN) for all other labels.

3.5 Performance Metrics

The primary performance metric of the system is the accuracy of the traffic flow

classifications. The accuracy of each factor set is calculated as follows,

Accuracy =
Number o f Correct Classi f ications

Number o f All Tested S amples
. (3.1)

For a multiclass classifier, such as this system, the overall accuracy is also the combined,

weighted True Positive Rate (TPR) across all classifications. The amount of time necessary

to train each algorithm is also reported, as given by the ML framework. The average CPU

time each algorithm requires to classify a single test flow is calculated by,

Runtime =
Time Required to Classi f y Test S amples

Number o f Tested S amples
. (3.2)

To be feasibly used in a near-real-time classifying system, the runtime should be low

enough for the classifying system to maintain network throughput.

3.6 System Parameters

The system parameters include the individual ML algorithm parameters. The

specifications of the computer used to host the ML framework also affects the metrics

because it affects system performance and the amount of time necessary to train and test

the ML being considered. This research focuses on the J4.8 ML algorithm, an open

source variation of C4.5. The following parameters affect how the algorithm creates the

decision tree. The default values referred to are the values given by the Weka 3.6.7

toolkit. For more detailed information on the Weka toolkit, the J4.8 algorithm, and the

possible configurations see [48]. The default parameters for all ML algorithms are used

for this research, unless otherwise specified. While tuning the algorithms by attempting to
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optimize the parameters is common, the default parameters produce acceptable results and

time constraints limited the scope of this research.

3.6.1 J4.8 Parameters.

• Binary Splits

If binary splits are used, the nodes of the decision tree will have at most two subtrees.

This parameter is either true or false. Binary trees are not used for this study.

• Minimum Number of Objects

This number defines the minimum number of training samples associated with any

leaf of the tree. Higher numbers lead to a more general tree, but at the possible cost

of accuracy. The default value for this parameter is 2; the value must be a positive

integer.

• Laplace Estimator

The Laplace estimator is used to eliminate problems that come from dividing by

probabilities of zero. This can increase the accuracy of the classifier if not all

possibilities are covered in the data used to create the decision tree. The Laplace

estimator is not used by default and will not be used herein. The value of this

parameter is either true or false.

• Pruning

Pruning reduces the number of nodes in the tree, making it simpler. Simpler trees not

only make it easier to analyze the relationships, but also make the resultant decision

more general. If pruning is disabled, the following parameters are not used. Pruning

is enabled by default and is used in this study.
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– Subtree Raising

Subtree Raising occurs when a parent node in the decision tree is replaced with

one of its child nodes. While subtree raising simplifies the tree and enhances

pruning, it is time consuming and increases the time of tree generation. Subtree

Raising is used by default and is used for this study.

– Modified J4.8 Reduced Error Pruning

If this feature is on the ML trainer uses a modified reduced error pruning method

instead of the default C4.5 method of pruning. Modified J4.8 Reduced error

pruning is not used by default and will not be used for this experiment.

– Confidence Factor

Smaller confidence factors cause less pruning and a less general decision tree.

The confidence factor is only used with the C4.5 pruning method, it is not used

in conjunction with the J4.8 modified reduced error pruning. The confidence

factor is a decimal number between 0 and 1, the default value is 0.25 and is

used for this experiment.

3.6.2 AdaBoost Parameters.

• ML Classifier

The ML algorithm that is being boosted. DecisionStump is the default in Weka. This

research looks at the effect of using J4.8 as the boosted classifier.

• Number of Iterations

The number of iterations AdaBoost uses to boost the classifier. The default is 10,

which is what is used in this research.
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• Seed

The number used to seed the random number generator for re-weighting the samples.

One is the default and is used in this research.

• Resampling

If this parameter is true the AdaBoost algorithm uses resampling instead of

reweighting. The default parameter of false is used.

• Weight Threshold

This is the threshold at which pruning occurs. This is set to 100 by default, which is

what is used in this research.

3.6.3 Computer System Parameters.

The system parameters affect the amount of time necessary to train and test the ML

algorithms. All experiments are run on a Dell T7500 with 12 gigabytes of Random Access

Memory (RAM) and a 2.67 gigahertz six-core Intel Xeon processor. Ubuntu 12.04 is the

operating system, and Weka is run using Java 1.6.

3.7 Factors

• Flow Length Analyzed

The flow length used for classification determines the amount of data the ML

algorithm has to train and classify each network flow. The flow length analyzed

is tested to determine how many packets are necessary to classify the endpoint web

services of the network traffic flow. If the required flow length is sufficiently short,

ML could be used in real-time detection devices.

– Complete Traffic Flow

The complete traffic flow is classified to determine the best expected accuracy

the ML algorithm.
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– First N Packets

The first N packets are used to test, with N ranging from one to twenty. Twenty

was experimentally determined to be after the performace peak with respect to

accuracy.

• ML Algorithm

Five ML algorithms are used in this research: J4.8, AdaBoost+J4.8, Naı̈ve Bayes,

NBTree, and SVM. These algorithms are described in Chapter 2 and were chosen

due to their previously reported results.

Table 3.3: Factor Levels

Factors Levels

Flow Length Analyzed All; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14;

(Number of Packets) 15; 16; 17; 18; 19; 20

ML Algorithm J4.8; AdaBoost+J4.8; Naı̈ve Bayes; NBTree;

SVM

3.8 Evaluation Technique

The workload is created from real network data as discussed in Section 3.3. Thus,

direct measurement is used to evaluate the SUT. Version 3.6.7 of the Weka Toolkit trains

and tests the ML algorithm. Weka’s implementation of the 5 ML algorithms are used for

this experiment, with the exception of LibSVM taken from [12]. 10-fold cross validation is

used for testing. The workload is divided into 10 equal folds of network traffic flows. Each

fold is iteratively used for testing after the remaining nine folds are used for training. The

results of the 10 iterations are averaged to produce the mean accuracy for that experiment.

Using 10-fold cross validation is standard in ML experiments and increases the fidelity
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of the results by guaranteeing every flow is used to both train and test, across separate

iterations [48]. Direct measurement is used since the network data and flow features are

recorded from real network traffic, and that data is used by the ML framework to test the

ML algorithms. By using real network data the results of the research are applicable for

use in real networks.

3.9 Experimental Design

Due to time constraints a partial factorial design is used. Refer to Table 3.3 and

Section 3.7 for the factors used in these experiments. Experiments are run testing all 5 ML

algorithms at an experimentally-determined packet level, for 5 experiments. Pilot studies

show classifying the first 12 packets produces high accuracy. Every flow length is tested

with the best two algorithms for 21∗2 = 42 experiments. Although 10-fold cross validation

is used for every experiment, it is still typical to run 10 repetitions of every experiment to

measure variance and for a better measure of accuracy [48]. The same set of folds is

used within a repetition and the folds are randomly regenerated between repetitions. Thus,

5 + 42 = 47 unique experiments * 10 replications results in 470 total experiments. The

focus of this research is the efficacy of ML algorithms in classifying encrypted flows and

the number of packets necessary to correctly classify these flows. The research achieves this

goal by focusing the experimental setup on testing the flow length analyzed. 10 iterations

of 10-fold cross validation is expected to result in a narrow confidence interval at 95%

confidence. This level of confidence is necessary, because misclassifications could lead to

data exfiltration. Due to the randomness of generating the folds, the entire workload can be

used for each 10-fold cross validation.

3.10 Methodology Summary

Data exfiltration is a growing concern for organizations. With an increasing amount of

applications using encrypted web services, tools that can assist in web service classification
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would improve network security. This research determines the feasibility of using ML

algorithms to classify endpoint web services using encrypted network flows. Furthermore,

if classifying encrypted network flows is feasible, then the flow length needed to classify is

experimentally determined. If the web service can be classified quickly enough, then this

strategy of application identification could be used as a first step in near-real-time network

protection devices.

The network data used for testing is real-world data collected from an existing research

network. Features for the samples are generated from the sizing information of encrypted

network traffic. These samples are fed into the Weka toolkit’s implementation of 5 ML

algoritms for training and testing. Experiments are run for each ML algorithm at a single

flow length and the best two are run for all 21 flow lengths. All experiments are evaluated

on the accuracy and runtime of the classifications.
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IV. Results and Analysis

This chapter discusses the results from the experiments detailed in Chapter 3.

Section 4.1 analyzes the results from the experiment with all five ML algorithms.

Section 4.2 analyzes the effects of flow length on the accuracy and runtime of J4.8.

Section 4.3 discusses AdaBoost+J4.8 and the difference in results between the two

algorithms. Section 4.4 summarizes the results.

4.1 Algorithm Comparison

The accuracy, time training, and runtime are shown below in Table 4.1. Recall the

runtime is the average CPU time taken to classify a single flow. The time training is reported

in seconds, and the runtime is reported in microseconds. The algorithm comparison

experiment only uses features calculated from the first 12 packets of the flow. Shapiro-Wilk

normality tests confirm that most of the values have normal distributions, and Table 4.1

uses a † to indicate which values are not normal. Recall from Chapter 3 that 10-fold

cross validation is used. Figures 4.1 and 4.2 show the effects of averaging the 10 folds

on distribution and normality. Figure 4.1 shows a decrease in variance, and Figure 4.2

shows both a decrease in variance and an increase in normality.

A pairwise t-test is run across all pairs of algorithms to determine which algorithms

produce statistically-different accuracy and runtimes. The p-value from these results are

shown in Tables 4.2 and 4.3. A p-value of less than 0.05 indicates that the null hypothesis—

that the values are not different—should be rejected within a 95% confidence interval. As

the tables show, all algorithms produce statistically-different results. Note the tables show

values rounded to six decimal places.

Naı̈ve Bayes performs the worst with a mean accuracy of only 0.6238, and while

it classifies faster than NBTree or LibSVM, it is still orders of magnitude slower than

AdaBoost+J4.8 and J4.8. LibSVM has a mean accuracy of 0.9656, which, while only
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Table 4.1: Algorithm Comparison: Mean Values from 10 repetitions

Algorithm Accuracy Time Training (s) Runtime (µs)

NBTree 0.974276 2064.1796 601.63216†

NaiveBayes 0.623773 1.2924 341.098358

AdaBoost+J48 0.979286 113.8176 16.724549†

J48 0.978298 14.4324 2.479733

LibSVM 0.965606 216.5916 2188.477515

† - Indicates the values are not normally distributed

Table 4.2: Statistical Difference in accuracy for All 5 Algorithms

P-Values from t-Test

NBTree NaiveBayes AdaBoost+J48 J48 LibSVM

NBTree 1 0 1.5e-05 8.6e-05 0

NaiveBayes 0 1 0 0 0

AdaBoost+J48 1.5e-05 0 1 0 0

J48 8.6e-05 0 0 1 0

LibSVM 0 0 0 0 1

A P-Value <0.05 indicates the samples are not the same with 95% confidence intervals

being 0.0127 less than J4.8, is 91.0348 standard deviations away. This shows the

apparent similarity in the accuracy is deceiving, as confirmed by the t-test. Both J4.8 and

AdaBoost+J4.8 perform well for accuracy and runtime, with accuracies above 0.978 and

runtimes below 16.725 µs. Tukey tests are not shown, but produce slighty different results.

Due to this, one-way tests, which are non-parametric, are used to verify the t-test’s results.

The slight discrepancies in the Tukey test are suspected to be caused by the fitted model

used, and the Tukey test is suspected to be less accurate.
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Figure 4.1: Violin Plot Showing Effects of 10-Fold Cross Validation on Distribution

The poor runtime of Naı̈ve Bayes, NBTree, and LibSVM could probably be

improved by using feature selection algorithms. Feature selection would eliminate features

determined to be of little use in classifying and reduce the computations needed. This

especially improves the runtime of ML algorithms that require intensive mathematical

calculations, such as Naı̈ve Bayes, NBTree, and LibSVM. Feature selection can also

improve accuracy. Tuning the parameters could also increase the accuracy—and maybe

the runtime—of the three weakest performers, making them more comparable to J4.8

and AdaBoost+J4.8. Of course, it could also increase the performance of J4.8 and

AdaBoost+J4.8, though perhaps less siginificantly.
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Figure 4.2: Violin Plot Showing Effects of 10-Fold Cross Validation on Distribution

Table 4.3: Statistical Difference in Runtime for All 5 Algorithms

P-Values from t-Test

NBTree NaiveBayes AdaBoost+J48 J48 LibSVM

NBTree 1 0 0 0 0

NaiveBayes 0 1 0 0 0

AdaBoost+J48 0 0 1 0 0

J48 0 0 0 1 0

LibSVM 0 0 0 0 1

A P-Value <0.05 indicates the samples are not the same with 95% confidence intervals
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4.2 Flow Length Comparison

This section analyzes the effects of varying the flow length analyzed in the workload

generation on J4.8’s performance. Section 4.3 analyzes AdaBoost+J4.8 and the differences

between the two algorithms across all tested flow lengths.

4.2.1 J4.8.

Table 4.4 shows the mean accuracy, time training, and runtime using J4.8 for all

flow lengths analyzed. As expected, the accuracy and the runtime increase as the flow

length analyzed increases. The accuracy peaks and eventually decreases as the flow

length continues to increase. Figures 4.4 and 4.5 show this increase for both J4.8 and

AdaBoost+J4.8. Statistical difference between accuracy is analyzed for every possible

combination of flow length pairs. Once again, t-tests are used to determine which values are

statistically different. Tukey and one-way tests are also run to verify the t-test’s findings.

Although they mostly came to the same statistical conclusions, t-tests are used for the

final conclusion due to earlier concerns with Tukey’s use of fitted models and the inherent

randomness of one-way tests.

Table 4.5 displays which flow lengths produce statistically different accuracy for J4.8.

The X indicates that the two flow lengths—listed by row and column—are not statistically-

different. As the table shows, most flow lengths are statistically different and the highest

accuracy, which is produced by 14 packets, is statistically different from all others. While

being statistically the most accurate, a flow length of 14 packets does not have statistically

different runtimes than flow lengths of 9-10, or 12-16 packets. The accuracy also decreased

beyond 14 packets—including analyzing all available packets—indicating that the flows

characteristics change after the first 14 packets. The increased flow lengths are suspected

to produce worse accuracy due to the addition of end point specific information. This is

further discussed after analyzing the performance of AdaBoost+J4.8. The worst accuracy

can be explained by the unequal number of samples. Simply classifying all flows as the
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most common label—Gmail—results in a 0.1978 accuracy. Distinguishing between the

two most common labels and correctly labeling those—and no others—would result in a

0.3186 accuracy.

Table 4.6 shows which flows produce statistically different runtimes. This table is

similar to Table 4.5, as the X indicates the two flow lengths are not statistically-different.

Two clusters appear and lengths of 9-16 packets and 16-20 packets are not statistically

different within the clusters, with the exception of a flow length of 11 packets. The entire

flow is also clustered with flow lengths of 16-20 packets. While more packets were included

in the feature calculation, the runtime is only the time required for the ML algorithm to

classify not including time taken for feature calculation. No attempt was made to optimize

feature calculation, but the average time taken to calculate and save the features is within an

order of magnitude of the runtime for flow lengths of 1-20 packets. This plateau of runtimes

would indicate that the features provide enough information for J4.8 to create decision trees

of equivalent complexity for flow lengths greater than 15 packets. Figure 4.3 shows a violin

plot comparing the distribution of 10-12 packet flow lengths. It is hypothesized that a flow

length of 11 packets breaks from the cluster due to its skew towards shorter runtimes. The

flow length of 10 packets is skewed toward higher runtimes. Refer to Figure 4.1 for an

example of normally distributed values.

Overall, J4.8 performs well with an accuracy above 97% when only analyzing the

first 10-20 packets of the flow and runtimes less than 3 microseconds for all tests. At

peak accuracy the runtime for classifying a single flow was 2.371126 microseconds, that is

equivalent to classifying 421,740 flows per second. The relative speed of classifying and

high accuracy make J4.8 a good candidate for near-real-time web service classification.
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Table 4.4: Means for Flow Length Comparsion J48

Num Packets Accuracy Time Training (s) Runtime (µs)

1 0.238524† 2.554 1.194619

2 0.238524† 2.5344 1.067906

3 0.348331† 3.4348† 1.104102

4 0.349491 6.0195 1.466129†

5 0.34903 6.5041 1.484212†

6 0.899841 8.5593 1.882422

7 0.899938 9.3896 2.081517

8 0.916846 10.7701 2.117722

9 0.924989 12.803 2.353026

10 0.973735 10.9558 2.280615†

11 0.973842 11.2326 2.135819†

12 0.978298 13.4345 2.35303

13 0.979348 14.839 2.407332

14 0.979979 14.3684 2.371126†

15 0.979022 15.8042 2.353033

16 0.97834 16.2736 2.497816

17 0.978754 18.186 2.660732†

18 0.978171 19.6132 2.715037

19 0.976392 19.7065 2.715034†

20 0.974513 19.9652 2.805531

All 0.955198 23.5585 2.733133

† - Indicates the values are not normally distributed
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Table 4.5: Statistical Difference of Accuracies in J48 by Flow Length Analyzed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 All
1 - X
2 X -
3 -
4 -
5 -
6 - X
7 X -
8 -
9 -
10 - X
11 X -
12 - X X
13 -
14 -
15 -
16 X - X
17 -
18 X X -
19 -
20 -
All -

X - Indicates the values are not statistically different according to the paired t-test

Table 4.6: Statistical Difference of Runtimes in J48 by Flow Length Analyzed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 All
1 - X X
2 X - X
3 X X -
4 - X
5 X -
6 - X
7 X - X X X
8 X - X X X X
9 X - X X X X X X X

10 X X X - X X X X X X
11 X X X X - X
12 X X X X - X X X X
13 X X X - X X X
14 X X X X - X X
15 X X X X X - X
16 X X X X X X - X X X X X
17 X - X X X X
18 X X - X X X
19 X X X - X X
20 X X X X - X
All X X X X X -

X - Indicates the values are not statistically different according to the paired t-test
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4.3 AdaBoost+J4.8

Table 4.7 shows the mean results from using AdaBoost+J4.8 to classify test samples

with all flow lengths analyzed. Similar to J4.8, the accuracy increases—at least initially—

as the flow length increases. The runtime also increases as flow length increases, although

without an apparent plateau. Figures 4.4 and 4.5 plot the accuracy and runtime versus

flow length. Figure 4.6 shows accuracy versus flow length, but zoomed in on the final

10 flow lengths to show the differences in accuracy more clearly. Table 4.8 shows which

flow lengths produce statistically-different accuracies. As with J4.8, only a handful of the

flow lengths produce statistically similar results, and the highest accuracy—this time 18

packets—was statistically-different from all others. Unlike J4.8, few of the runtimes are

not statistically-different, as shown in Table 4.9. Flow lengths of 17 and 18 packets are

not statistically different from each other in runtime, but are statistically worse than flow

lengths 1-16 and better than 19, 20 packets, or the entire flow.

Recall that AdaBoost works by iterating over the boosted algorithm and varying

weights to create additional classifiers that have less error for these new weightings. These

additional classifiers require more time to train and test. AdaBoost stops iterating if newly

created classifiers cannot improve performance. Figure 4.7 shows the ratio of training and

runtimes between AdaBoost+J4.8 and J4.8. For flow lengths between 1 and 5 packets

the time training, runtime, and accuracy are all very similar or identical; this indicates

that AdaBoost is unable to produce any extra classifiers to improve performance. The

spike in time training and runtime, beginning at 6 packets, indicates that AdaBoost creates

additional classifiers. While the additional classifiers slightly lower accuracy for flow

lengths 6-8, AdaBoost statistically improved J4.8’s accuracy for the flow lengths 9-20 and

when all packets are available.
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Table 4.7: Means for Flow Length Comparison AdaBoost+J48

Num Packets Accuracy Time Training (s) Runtime (µs)

1 0.238524† 2.5909 1.176507

2 0.238524† 2.5895† 1.321329

3 0.348331† 3.4874 1.267011†

4 0.349491 6.0863 1.520428

5 0.34903 6.5356† 1.502338†

6 0.899486 80.7932 14.172457

7 0.89947 84.5713 13.900967

8 0.916274 89.3318 13.321739

9 0.926048 106.1684 15.638576

10 0.974605 90.4441 13.339829

11 0.974533 95.3992 13.756144

12 0.979286 105.82 15.457567

13 0.980653 117.322 16.815069

14 0.981362 122.5245 18.136428

15 0.980924 137.6435 19.693045

16 0.981782 140.5467 20.127418

17 0.982906 158.178 21.285831

18 0.984104 160.4537 21.557334

19 0.983078 164.6682 21.99176

20 0.983056 174.626 22.715774†

All 0.969943 249.8702 25.249793

† - Indicates the values are not normally distributed
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Table 4.8: Statistical Difference of Accuracies in AdaBoost+J48 by Flow Length Analyzed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 All
1 - X
2 X -
3 -
4 -
5 -
6 - X
7 X -
8 -
9 -
10 - X
11 X -
12 -
13 -
14 -
15 -
16 -
17 - X X
18 -
19 X - X
20 X X -
All -

X - Indicates the values are not statistically different according to the paired t-test

Table 4.9: Statistical Difference of Runtimes in AdaBoost+J48 by Flow Length Analyzed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 All
1 - X X
2 X - X X
3 X X -
4 - X
5 X X -
6 - X X
7 X - X
8 - X X
9 - X

10 X -
11 X X X -
12 X -
13 -
14 -
15 -
16 -
17 - X
18 X -
19 -
20 -
All -

X - Indicates the values are not statistically different according to the paired t-test
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Table 4.10 shows the statistical differences between accuracies and runtimes of J4.8

and AdaBoost+J4.8 for every flow length analyzed. Statistical difference is tested with

pairwise t-tests at a 95% confidence interval. Running Friedman tests—which are non-

parametric—also indicate that the J4.8 and AdaBoost+J4.8 perform differently, even taking

the different datasets into account. As with the t-tests, a 95% confidence interval is used

for the Friedman tests. Figures 4.4 and 4.5 show the increase in runtime is much more

significant than the increase in accuracy.

The increase in accuracy as flow lengths increase is explainable by the addition of

information about each flow as more packets are used to calculate the features. The spike

at the flow length of 6 packets is probably due to the resolution of the TCP handshake

and the beginning of web service-specific information. The accuracy continues to increase

as a higher percentage of the information acquired is web service-specific. This includes

TLS handshake, which takes as little as six packets—for a total of nine packets into the

flow—to complete. The peak and eventual decrease of the accuracy could be due to the

introduction of confounding data. Differences in browsers or user profiles could affect the

page content being returned and introduce additional variability. The accuracy of analyzing

the full flow is lower than the accuracy of analyzing flow lengths 10-20 for both algorithms.

This indicates that flows continue to become more unpredictable after the initial peak.

AdaBoost+J4.8’s later peak in accuracy is due to AdaBoost’s additional classifiers. By

comparing the first 5 accuracies it is apparent that AdaBoost did not successfully reduce

the error with additional classifiers and used the same classifier that J4.8 produced. This is

not surprising as J4.8 is deterministic and will always produce the same decision tree with

the same input samples. AdaBoost’s additional classifiers most likely increase accuracy

after the first 9 packets due to the ability of additional classifiers to more accurately handle

less common branches in the original tree.
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Table 4.10: Statistical Difference of Accuracies and Runtimes

Number of Packets Accuracy Runtime (µs)

1 - -

2 - J

3 - -

4 - -

5 - -

6 J J

7 J J

8 J J

9 A J

10 A J

11 A J

12 A J

13 A J

14 A J

15 A J

16 A J

17 A J

18 A J

19 A J

20 A J

All A J

J - Indicates J4.8 was statistically different and better.

A - Indicates AdaBoost+J4.8 was statistically different and better.
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AdaBoost+J4.8 also performs well with an accuracy above 98% when analyzing only

the first 13-20 packets of the flow and has runtimes less than 23 microseconds for all tests.

Effectively classifying 46,387 flows a second. If 23 microseconds per flow is fast enough

for a near-real time device to classify all web service traffic without becoming overloaded,

then AdaBoost+J4.8 is a better decision than J4.8, because of the improved accuracy. It

would take AdaBoost+J4.8 less than 5 seconds to classify all TLS flows seen in a week

on the test network (compared to 0.52 seconds for J4.8), this shows the feasibility of using

either algorithm in a near-real-time device for the test network. If runtime is a concern, J4.8

is almost an order of magnitude faster and—with less than 1% drop in accuracy—could be

the better choice.

4.4 Summary

With the default parameters J4.8 and AdaBoost+J4.8 outperformed Naı̈ve Bayes,

NBTree, and LibSVM in both accuracy and runtime. In a more detailed analysis J4.8

has a faster runtime than AdaBoost+J4.8 for flow lengths of greater than 5 packets, and

AdaBoost+J4.8 has a higher accuracy for flow lengths greater than 8 packets. The runtimes

of both algorithms increase as the flow length analyzed increases. The accuracy for both

algorithms increases initially before peaking, and eventually decreasing. AdaBoost+J4.8

peaks later than J4.8, due to AdaBoost’s additional classifiers. The peak and eventual

decline is believed to be due to greater variation per user occuring later in the flow. J4.8

and AdaBoost+J4.8 are both feasible for use in near-real-time devices and, depending on

the requirements, either could be preferred.
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V. Conclusions

This chapter summarizes the results of the research. Section 5.1 discusses the

conclusions based on the results in Chapter 4. Section 5.2 lists the contributions of this

research, and Section 5.3 describes the recommendations for future work. Section 5.4

summarizes this chapter.

5.1 Conclusions

The workload for the ML algorithms tested is generated as described in Section 3.3.1.

A DPI method is used to automatically classify the web services within encrypted network

flows using an optional TLS field. While this method can only classify encrypted flows that

use the optional field, it labels a sufficient number of flows to test the effectiveness of the

ML algorithms.

Five ML algorithms—Naı̈ve Bayes, NBTree, LibSVM, J4.8, and AdaBoost+J4.8—

are tested against flow lengths of 12 packets. J4.8 and AdaBoost+J4.8 perform the best

for both accuracy and runtime. Naı̈ve Bayes was not further considered due to its low

accuracy. LibSVM and NBTree were not further considered due to their high runtimes.

J4.8 and AdaBoost+J4.8 are further tested for flow lengths of 1-20 packets and for the

entire flow. They produce statistically-different results for both accuracies and runtimes

for flow lengths of 5 or more packets, with J4.8 being faster whenever a difference exists.

AdaBoost+J4.8 is statistically more accurate for flow lengths of 9-20 packets.

This research found both J4.8 and AdaBoost+J4.8 to be suitable for near-real-

time detection devices. For flow lengths of 10-20 packets, J4.8 classifies over

97% of flows correctly in less than 3 microseconds. For flow lengths of 13-20

packets, AdaBoost+J4.8 classifies over 98% of flows correctly with runtimes under 23

microseconds. Both algorithms produce higher accuracies when not using the entire
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traffic flow. If AdaBoost+J4.8 can classify flows fast enough to meet a network’s

throughput requirements, it is recommended above the other algorithms tested. If the

device could be expected to classify in less time, then J4.8 is the recommended algorithm,

as the peak accuracy decreases by less than 0.5% while the runtime is less than 11% of

AdaBoost+J4.8’s.

5.2 Contributions

This research presents two ML algorithms for use in classifying the web service within

an encrypted TLS flow and shows ML algorithms can achieve acceptable accuracy in this

context. This work furthers the current research in the field by contributing the proven

capability to classify applications that utilize TLS to communicate through the Internet. As

more applications shift to include web or cloud-based services, this becomes increasingly

important. In addition to introducing the ability of ML algorithms to classify web services,

this research also expands on the number of labels used in ML-based traffic classification

research. It also directly analyzes the performance effects of using AdaBoost in conjunction

with J4.8 on web service classification.

This research also analyzes the time necessary to classify an encrypted traffic flow on

modern systems. The feature set used, with the two algorithms selected shows excellent

results with the ability of a ML algorithm to classify a week’s worth of real network TLS

traffic in less than 5 seconds using the slower of the algorithms. This speed of classification

shows the feasibility of this technique for malware intrusion and data exfiltration prevention

in near-real-time network analysis devices.

A new method of dataset generation is also described. By using the TLS optional

server name, large amounts of captured network data can be automatically labeled for

testing. This new method is also network independent, although the specific labels are

expected to change per network. A subset of features used in previous work is defined and

a software tool is created that calculates these features within an acceptable delay.
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5.3 Future Work

The items listed below are suggestions for future work that could expand on the

research presented here.

• Use Web Service Types as Labels

Other research classifies flows labeled by application type—i.e., Mail or P2P—

instead of web service. Flows such as Google Plus and Facebook could be combined

into a social networking label. Labels such as Google IMAP and Yahoo IMAP could

be combined into an IMAP label. By attempting to combine labels into broader

categories ML algorithms could provide insight into similarities between grouped

labels.

• Test On Other Networks

As discussed in Chapter 3, performance is expected to change for different networks.

It would be useful to test how accurate the same ML algorithms are at classifying web

services on other networks. Results could be compared when the ML algorithms are

trained on the new test networks and when they are trained on the current network

then tested on the new network.

• Test Changes Over Time

Networks are dynamic and change over time. The accuracy of the classifiers could

change as the networks change. Running the same experiment with data collected

from the same network at a later date could provide information on the stability of the

results reported in this document and on how the network has changed. Furthermore,

using classifiers created during this reasearch to classify flows captured at later dates

would provide information on how often the classifiers need updating.
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• Vary Number of Training Samples

As shown in Appendix A, removing the least common label increases accuracy. Further

experiments that vary the number of training samples could find a recommended number

of samples to use for creating the ML classifier.

• Using a MITM DPI Device to Label Flows

As discussed in Chapter 2, some DPI devices intercept and decrypt encrypted flows to

inspect the unecrypted traffic. Using one of these devices to inspect the unencrypted

traffic and label the flow, while training and testing ML algorithms on features

calculated from the encrypted flow would provide a broader range of labels for

classification.

• Test With More Flow Lengths

Testing with additional flow lengths could reveal an additional peak in accuracy or

a plateau in runtimes for flow lengths greater than 20 packets. While these would

require the ML algorithm to wait for more packets before beginning analysis, if there

is a dramatic change waiting could be beneficial.

• Test With Additional Algorithms

Testing with other ML algorithms or performing parameter tuning on the tested

algorithms could produce better results for either the measured accuracy or runtime.

5.4 Summary

This chapter discusses the results and conclusions of the thesis. The contributions to

the field are presented, and several suggestions for future work are listed.
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Appendix: Additional Experiments

A.1 Timing Experiments

The experiments listed below were run with 10 iterations of 10-fold cross validation.

They were run before the final experiments analyzed in Chapter 4. Time Testing is listed

in seconds and is the total time it took to classify all testing flows.

A.1.1 Results with Original Features.

Tables A.1 and A.2 show the results of classifying the encrypted flows with flow length

analyzed defined as either number of packets or microseconds.

Table A.1: J4.8 Performance with Flow Length as Packets

Packets Accuracy Time Training (s) Time Testing (s)

1 0.2385 3.202 0.0074

2 0.2385 3.371 0.0072

3 0.3483 4.304 0.0069

4 0.3495 7.227 0.0083

5 0.349 8.513 0.0087

6 0.8998 10.78 0.0122

7 0.8999 11.21 0.013

8 0.9168 12.61 0.0141

9 0.925 15.41 0.0151

10 0.9737 13.14 0.0131

11 0.9738 13.31 0.0138

12 0.9783 15.42 0.0147
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Table A.2: J4.8 Performance with Flow Length as Mircoseconds

MicroSeconds Accuracy Time Training (s) Time Testing (s)

1000 0.3206 3.943 0.0076

2000 0.4333 5.512 0.008

3000 0.4344 8.714 0.0098

4000 0.4341 8.372 0.0091

5000 0.9 11.5 0.012

10000 0.9 12.13 0.0136

15000 0.9168 12.81 0.0139

20000 0.9249 15.41 0.0144

25000 0.9735 13.63 0.0133

30000 0.9737 13.57 0.0133

35000 0.9783 15.8 0.0143

40000 0.9794 17.43 0.0169

45000 0.9804 17.65 0.0155

50000 0.9797 19.79 0.0177

A.1.2 Results with Timing Features.

Tables A.4 and A.5 use the features described in Appendix A.1.2, which is Table 3.1

with additional timing features added.
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Table A.3: Features with Timing

Feature Description

1-21*† Number of bytes in Ethernet packet

22-42*† Number of bytes in IP packet

43-63*† Number of bytes in IP and TCP headers

64-65 Number of packets

66-67 Number of packets with TCP ack flag set

68-69 Number of packets with only the ack flag set

70-71 Number of packets with TCP optional SACK Blocks

72-73 Max number of SACK blocks in a single packet

74-75 Number of packets with ack flag set and SACK information

76-77 Number of packets with TCP payloads

78-79 Number of combined bytes within TCP payloads

80-81 Number of packets with the TCP push flag set

82-83 Number of packets with TCP syn flag set

84-85 Number of packets with fin flag set

86-87 Was a packet sent allowing SACK blocks (Value is Y or N)

88-89 Number of packets with TCP urgent flag set

90-91 Number of combined bytes within packets that have urgent flag set

92-102*† Interarrival time of packets

All values are calculated for both Client to Server and Server to Client
† –Values are also calculated across entire flow
* –Value is collected per packet and the following 7 stats are computed:

Minimum; First Quartile; Mean; Median; Third Quartile; Maximum; Variance
The first three rows have 21 features each: 7 stats for each Client to Server, Server to Client, and entire flow.
Refer to [31] for more information on Selective Acknowlegment (SACK)
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Table A.4: J4.8 Performance with Flow Length as Packets and Timing Features

Packets Accuracy Time Training (s) Time Testing (s)

1 0.2403 6.305 0.0085

2 0.6228 16.17 0.0147

3 0.7231 19.36 0.0164

4 0.7185 30.18 0.0183

5 0.7198 29.9 0.0195

6 0.9285 21.03 0.0149

7 0.9279 20.33 0.0151

8 0.9257 23.36 0.0139

9 0.9316 22.88 0.0141

10 0.9717 23.9 0.015

11 0.9717 28.11 0.0177

12 0.9783 28.58 0.0165
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Table A.5: J4.8 Performance with Flow Length as Microseconds and Timing Features

MicroSeconds Accuracy Time Training (s) Time Testing (s)

1000 0.323 7.259 0.0089

2000 0.7016 16.67 0.0137

3000 0.7234 24.33 0.0158

4000 0.7185 30.82 0.0192

5000 0.9293 20.65 0.0142

10000 0.9293 20.36 0.015

15000 0.9279 23.2 0.0143

20000 0.9308 27.66 0.0165

25000 0.9718 25.34 0.0166

30000 0.9724 28.92 0.0175

35000 0.9761 28.65 0.016

40000 0.9792 28.47 0.0175

45000 0.9793 28.36 0.0175

50000 0.9793 31.54 0.0191
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A.2 Most Common Labels

Tables A.6 and A.7 are created from experiments identical to those in Chapter 4 with

the least common label—Google Docs—removed. The accuracy increases for all flow

lengths. Sample runs of the experiments show Google Docs to be the label with the

lowest accuracy. There are not enough samples to draw definitive conclusions, but it is

hypothesized that the lower number of training samples causes the lower accuracy.
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Table A.6: Means for Flow Length Comparison J48 No Google Docs

Num Packets Accuracy Time Training (s) Runtime (µs)

1 0.239522 2.5337† 1.181425†

2 0.239522 2.5459† 1.181428

3 0.349784† 3.3846 1.254139

4 0.350958† 6.0295 1.544939

5 0.350503 6.5407† 1.363184

6 0.903283 8.6468 1.872113

7 0.903412 8.794 2.035696†

8 0.920375 10.5857 2.108397

9 0.92838 12.0611 2.344678†

10 0.977182 11.1637 2.126585

11 0.977344 11.069 2.217461

12 0.981686 13.3913 2.39922

13 0.982833 14.9458 2.39922

14 0.98352† 14.1251 2.453733†

15 0.982687 15.2254 2.344685†

16 0.98218 16.3038 2.526447

17 0.98216 17.0873 2.617313

18 0.981984 19.5797 2.744549

19 0.980139 19.1842 2.690033†

20 0.977333 20.6291 2.871792†

All 0.958957 22.7547 2.72638†

† - Indicates the values are not normally distributed
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Table A.7: Means for Flow Length Comparison AdaBoost+J48 No Google Docs

Num Packets Accuracy Time Training (s) Runtime (µs)

1 0.239522 2.57† 1.126906

2 0.239522 2.5969† 1.181432

3 0.349784† 3.4163 1.272311

4 0.350958† 6.0868 1.544959

5 0.350503 6.5712 1.599481†

6 0.903975† 91.7281 16.503678

7 0.903981 89.835 16.212858

8 0.921068 102.1627 16.249228†

9 0.929585 98.2398 16.849023

10 0.978202 103.8764 16.958091

11 0.978165 102.3776 17.012623

12 0.982766 122.5157 19.084673

13 0.9844 124.457 19.011976

14 0.985103 125.3094 18.921077

15 0.984647 136.2271 19.557225

16 0.985728 138.5325 20.411523†

17 0.986581 144.2625† 20.375149

18 0.987384† 166.9176 21.956452

19 0.986381† 172.6407 22.592617

20 0.985805 195.7394 23.465041

All 0.972507 232.4322 24.319312†

† - Indicates the values are not normally distributed
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A.3 Summary

When the flow length analyzed is defined by number of packets, the accuracy increases

faster when timing features are included, but the overall accuracy is not improved. As

mentioned in Chapter 3, the timing features were not included so the features would better

represent the type of flow, and not the time required to communicate to a particular server.

The number of packets from the beginning of the flow is used as the definition for flow

length instead of microseconds, due to the inherent timing information included in using a

time-based definition. Additional experiments also indicate that increasing the number of

training samples may increase the accuracy.
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